Nemeth Code Symbols Used in High School and Strategies for Supporting Math Learning

Lesson 3: Symbols for Advanced Math, Part 3

Objectives

Participants will be able to:

- Read and write problems containing
 - 1. superscripts
 - 2. subscripts
 - 3. radicals with an index
 - 4. functions
 - 5. Greek letters
- Use the five step rule for Sigma notation

Superscript Review and Expansion

- superscript indicator (dots 4-5)
- baseline indicator (dot 5)
- No baseline indicator is needed if a space follows a superscript or if it is at the end of a line.
- If an exponent is raised to another exponent, the superscript indicator is used twice instead of once before the second exponent.

$$a^{2} + b^{2} = c^{2}$$

$$f^{-1}(x)$$
Read: finverse of x
$$e^{x^{2}}$$
Read: e to the x squared power

Subscript Review (No Indicator)

subscript indicator (dots 5-6)

A variable or function with a numeric subscript does not use a subscript indicator.

$$A = \frac{h}{2}(b_1 + b_2)$$

Read: A equals open fraction h over 2 close fraction open parenthesis b sub 1 plus b sub 2 close parenthesis.

$$X_1, Y_1$$
 Read: the ordered pair x sub 1 y sub 1

$$H_2O$$
 Read: H 2 O

Examples of Subscripts and Use of the Subscript and Baseline Indicators

subscript indicator (dots 5-6)

```
Read: a sub i
```

Read: a sub n plus 1 equals a sub n baseline plus 4.

$$a = \frac{V_f - V_i}{t}$$

Read: a equals open fraction v sub f baseline minus v sub i baseline over t close fraction.

Examples of Logarithms with and without a Subscript Indicator

```
\log_b a
```

Read: log base b of a

$$\log_2 x$$

Read: log base 2 of x

Logarithms denoted by log or In are functions and should be followed by a space.

If the log is followed by a subscript, the space comes after that subscript.

Read: natural log of x equals log base e of x

Activity 3A

Braille the following problems.

1.
$$f^{-1}(x) = \frac{x+7}{2}$$

2.
$$\log 10^{x^2} = x^2$$

3.
$$X_r = \frac{y^2}{z}$$

4.
$$H_2SO_4$$

Activity 3A: Answer Key

1.
$$f^{-1}(x) = \frac{x+7}{2}$$

2.
$$\log 10^{x^2} = x^2$$

Activity 3A: Answer Key (Continued)

$$3. x_r = \frac{y^2}{z}$$

4.
$$H_2SO_4$$

Radicals Review (Square Roots)

- radical symbol
- termination symbol

Radicals with an Index

index-of-radical indicator

Read: the cube root of 64

$$\sqrt[4]{x} + 3$$

Read: the 7th root of x end root plus 3

Radicals with an Index (Continued)

$$\sqrt[5]{\frac{1}{32}}$$

Read: the 5th root of open fraction 1 over 32 close fraction end root

Read: the 4th root of zero point zero zero one six

Activity 3B

Interline the problems.

```
. . . .
. • . .
   . . . .
. . . . . . . .
. . . . . . .
  . . . . .
```

Activity 3B: Answer Key

1.
$$f^{-1}(x) = \sqrt[3]{x} - 2$$

2. $x^3 - 6x^2 + 12x - 8 = (x - 2)^3$

3. $\ln e^{x^6} = x^6$

Activity 3B: Answer Key (Continued)

4.
$$a_n = 2(a_{n-1} + 3)$$

5. $\sqrt[8]{x^{16}} = x^2$

6. The midpoint of (x_1, y_1) and (x_2, y_2) is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

Functions

```
sin (sine)
cos (cosine)
tan (tangent)
log (log)
In (natural log)
```

- Note that e is often used with In.
- Do not use the English Letter Indicator in a function.

Examples of Functions

```
sin 45° Read: sine of 45 degrees
cos A
                Read: cosine of A
Read: tangent of 2B
Read: log base 2 of 8
:: ::: Ine^6
              Read: natural log of e to the 6<sup>th</sup> power
Find sin A, if \cos A = \frac{1}{2}.
```

Greek Letters

- Greek letter indicator
- alpha (lowercase) α
- beta (lowercase) β
- pi (lowercase) π
- theta (lowercase) θ
- delta (uppercase) △

Examples with Greek Letters

```
\cos 2\alpha
              Read: cosine of two alpha
\beta = 30^{\circ}
                Read: beta equals 30 degrees
\langle 3, \pi \rangle
                 Read: open angle bracket 3
                 comma pi close angle bracket
```

Read: m equals open fraction delta y over delta x close fraction.

Find
$$\sin(\alpha - \beta)$$
.

Read: Find sine of open parenthesis alpha minus beta close parenthesis.

The Greek Letter Sigma

```
\sum_{i=1}^{5} i Read: the sum from i=1 to 5 of i
```

Multipurpose indicator, sigma, directly under indicator, i = 1, directly over indicator, 5, termination indicator, i

Steps for Sigma Notation

Uses the Five-Step Rule

```
Step 1 : Multipurpose indicator
```

Step 2 \vdots sigma (uppercase) Σ - Expression being modified

Step 3 : Directly under indicator

```
Step 4 :: i = 1 Modifier
```

Step 3 : Directly over indicator

Step 4 : 5 Modifier

Step 5 : Termination indicator

```
Putting it together i = 1 to 5 of i
```

Examples of Sigma Notation

$$\sum_{j=2}^{10} 5j - 3$$

Read: the sum from j=2 to 10 of 5j minus 3

$$\sum_{i=0}^{\infty} 2\left(\frac{1}{3}\right)^{i}$$

Read: the sum from i=0 to infinity of 2 open parenthesis open fraction 1 over 3 close fraction close parenthesis to the i power.

Activity 3C

Braille the problems.

$$1.\cot x = \frac{\cos x}{\sin x}$$

- 2. $\log_3 81 = 4$
- $3. \log_b m^2 = 2 \log_b m$

4.
$$\sin \theta = \cos \left(\frac{\pi}{2} - \theta \right)$$

5. Find the sum. $\sum_{i=0}^{\infty} (0.6)^{i}$

Problem 1: cot stands for cotangent and would be brailled:

Problem 6: A multipurpose indicator (dot 5) will be needed between two vertical bars where the first is a closing vertical bar and the second is an opening vertical bar.

6. The formula for work is $W = |F||D|\cos A$.

Activity 3C: Answer Key

1.
$$\cot x = \frac{\cos x}{\sin x}$$

2. $\log_3 81 = 4$

3. $\log_b m^2 = 2\log_b m$

Activity 3C: Answer Key (Continued)

4.
$$\sin \theta = \cos \left(\frac{\pi}{2} - \theta\right)$$

5. Find the sum. $\sum_{j=0}^{\infty} \left(0.6\right)^{j}$

6. The formula for work is $W = |F||D|\cos A$.