Appendix A

Greek Letters (Complete List)

Letter
Alpha
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Theta
Iota
Kappa
Lambda
Mu
Nu
Xi

Omicron
Pi
Rho
Sigma
Tau
Upsilon
Phi
Chi
Psi
Omega

Lowercase
$\alpha:!$
$\beta:!$
$\gamma:!::$
$\delta::$
$\varepsilon:!$
$\zeta: \vdots$
$\eta:!:$
Oor $\vartheta::$

$\kappa:!$
$\lambda: \vdots$
$\mu: \vdots$
$v:!$
$\xi::$
O :
π Or $\varpi: \vdots$
$\rho: \vdots$
orors $\vdots:$
$\tau:!$
$v: \vdots$
or φ : : :
$\chi: \vdots$
$\psi:!$
ω : : :

Uppercase
A :!:!
B : : : :
$\Gamma: \vdots:$
$\Delta:!$
E : : : :
Z : : : :
H :!: : :
$\Theta:!:!$

I : : : ! !
K :!:! :
$\Lambda:!: \vdots$
M : : : : :
N :!:: : :
$\Xi:!: \because$
0 : : : :
$\Pi:!:$
P : : : :
$\Sigma:!$
T : : : :
$\Upsilon: \vdots:$
$\Phi:!$
X : : : : : :
$\Psi:!::!$
Ω :! : :

Greek Alphabet (Examples)

This appendix includes some common examples taken from the Nemeth Symbol Library. To see more examples, you can access the full Nemeth Symbol Library at https://www.pathstoliteracy.org/nemeth-symbol-library/.

Lowercase Alpha Examples

1. The secant of alpha equals the square root of two is written $\sec \alpha=\sqrt{2}$

2. The cosecant of alpha equals open fraction one over the sine of alpha close fraction is written

$$
\csc \alpha=\frac{1}{\sin \alpha}
$$

3. The cosine of open parenthesis negative alpha close parenthesis equals the cosine of alpha is written

$$
\cos (-\alpha)=\cos \alpha
$$

Lowercase Beta Examples

1. Beta equals 45 degrees is written
$\beta=45^{\circ}$

2. The tangent of two beta equals open fraction two tangent beta over one minus tangent squared beta close fraction is written
$\tan 2 \beta=\frac{2 \tan \beta}{1-\tan ^{2} \beta}$

3. One plus cotangent squared beta equals cosecant squared beta is written

$$
\begin{aligned}
& 1+\cot ^{2} \beta=\csc ^{2} \beta
\end{aligned}
$$

Lowercase Gamma Examples

1. The cosine of open parenthesis lowercase gamma plus two pi close parenthesis equals the cosine of lowercase gamma is written $\cos (\gamma+2 \pi)=\cos \gamma$

2. The cosine of two lowercase gamma equals one minus two sine squared lowercase gamma is written

$$
\cos 2 \gamma=1-2 \sin ^{2} \gamma
$$

3. Sine squared lowercase gamma equals one minus cosine squared lowercase gamma is written

$$
\sin ^{2} \gamma=1-\cos ^{2} \gamma
$$

Lowercase Delta Examples

1. Lowercase delta is greater than zero is written

$$
\delta>0
$$

2. Lowercase delta equals open fraction lowercase epsilon over three close fraction is written

$$
\delta=\frac{\varepsilon}{3}
$$

3. Zero is less than open absolute value x minus a close absolute value is less than delta is written
$0<|x-a|<\delta$

Uppercase Delta Examples

1. Uppercase delta y which means the change in y is written
Δy
2. Uppercase delta x equals x sub two minus x sub one is written $\Delta x=x_{2}-x_{1}$

3. The formula for slope m equals open fraction uppercase delta y over uppercase delta x close fraction is written
$m=\frac{\Delta y}{\Delta x}$

Lowercase Epsilon Examples

1. Lowercase epsilon is greater than zero is written
$\varepsilon>0$

2. Open parenthesis lowercase epsilon comma lowercase delta close parenthesis is written
(ε, δ)
```
!: :!:!: :O: : :
```

3. Open absolute value f of x minus L close absolute value is less than lowercase epsilon is written
$|f(x)-L|<\varepsilon$
: :

Lowercase Theta Examples

1. The cotangent of theta equals open fraction cosine of theta over the sine of theta close fraction is written

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}
$$

2. The cosine of two theta equals cosine squared theta minus sine squared theta is written

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

3. Sine squared theta plus cosine squared theta equals one is written $\sin ^{2} \theta+\cos ^{2} \theta=1$

Lowercase Lambda Examples

1. Lowercase lambda which often represents wavelength is written λ
: :
2. Lambda equals open fraction v over f close fraction is written
$\lambda=\frac{v}{f}$

3. v equals f multiplication dot lowercase lambda is written
$v=f \cdot \lambda$

Lowercase Pi Examples

1. C equals two pi r is written

$$
C=2 \pi r
$$

2. The cosecant of open fraction five pi over 3 close fraction is written $\csc \frac{5 \pi}{3}$

3. The cotangent of open parenthesis negative open fraction pi over three close fraction close parenthesis is written

$$
\cot \left(-\frac{\pi}{3}\right)
$$

Lowercase Rho Examples

1. Lowercase rho equals 1000 kilograms per meter cubed is written

$$
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

2. Lowercase rho equals open fraction m over V close fraction is written
$\rho=\frac{m}{V}$

3. Lowercase rho equals open fraction ten kilograms over 5 meters cubed is written
$\rho=\frac{10 \mathrm{~kg}}{5 \mathrm{~m}^{3}}$

Lowercase Sigma Examples

1. Lowercase sigma which is often used to represent the standard deviation in statistics is written

σ

$\because:$
2. Lowercase sigma equals fourteen point eight two is written $\sigma=14.82$

3. Lowercase sigma equals the square root of open fraction uppercase sigma open parenthesis \times minus \times bar close parenthesis squared over n minus 1 is written
$\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

Uppercase Sigma Examples

1. The sum i equals one to five of four i minus two is written

$$
\sum_{i=1}^{5} 4 i-2
$$

2. Lowercase sigma equals the square root of open fraction uppercase sigma open parenthesis \times minus \times bar close parenthesis squared over n minus 1 is written
$\sigma=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}$

3. The sum from n equals two to four of open fraction one over n minus one close fraction equals one and five-sixths is written
$\sum_{n=2}^{4} \frac{1}{n-1}=1 \frac{5}{6}$

4. The sum from i equals one to infinity of ten open parenthesis one-half close parenthesis to the n minus 1 power equals twenty is written
5. The sum from i equals one to n of x sub i is written
$\sum_{i=1}^{n} x_{i}$

$$
\begin{aligned}
& \sum_{i=1}^{\infty} 10\left(\frac{1}{2}\right)^{n-1}=20
\end{aligned}
$$

$$
\begin{aligned}
& \text { : }: \vdots \quad \vdots: \vdots
\end{aligned}
$$

Lowercase Phi Examples

1. Open fraction one over the secant of phi close fraction equals the cosine of phi is written

$$
\frac{1}{\sec \varphi}=\cos \varphi
$$

2. The cosine of two phi equals two cosine squared phi minus one is written

$$
\cos 2 \varphi=2 \cos ^{2} \varphi-1
$$

3. Cosine squared phi equals one minus sine squared phi is written $\cos ^{2} \varphi=1-\sin ^{2} \varphi$

Lowercase Omega Examples

1. The lowercase Greek letter Omega which often represents angular velocity is written
ω
: :
2. Lowercase Greek letter Omega equals fifteen degrees per hour is written
$\omega=15^{\circ} /$ hour

3. Lowercase Greek letter Omega equals open fraction v over r close fraction is written
$\omega=\frac{v}{r}$
::: : : : : : : : : : : : : :

Appendix B

Biology

Hardy-Weinberg Equations

p (frequency of the dominant allele in a population)
q (frequency of the recessive allele in a population)
$p^{2}+2 p q+q^{2}=1$

$p^{2}+q=1$

Mean

\bar{x} (mean)
n (size of the sample)
x_{i} (data value)
$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

Photosynthesis

$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$

Respiration

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Standard Deviation

$$
\begin{aligned}
& \mathrm{s} \text { (standard deviation) } \\
& \bar{x} \text { (mean) } \\
& \mathrm{n} \text { (size of the sample) } \\
& x_{i} \text { (data value) } \\
& s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
\end{aligned}
$$

Appendix C
 Chemistry
 Chemistry (Common Equations and Formulas)

Avogadro's Law
V_{1} (initial volume)
n_{1} (initial moles)
V_{2} (final volume)
n_{2} (final moles)
$\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}$
: : : : : : : : : : : : : : :

Boiling Point Elevation

$\Delta \mathrm{T}_{\mathrm{b}}$ (boiling point elevation)
K_{b} (molal boiling point constant)
m (molality)
$\Delta T_{b}=K_{b} m$

Boyles Law

P_{1} (initial pressure)
V_{1} (initial volume)
P_{2} (final pressure)
V_{2} (final volume)
$P_{1} V_{1}=P_{2} V_{2}$
:

Charles Law

V_{1} (initial volume)
T_{1} (initial temperature)
V_{2} (final volume)
T_{2} (final temperature)
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$

Combined Gas Law

P_{1} (initial pressure)
V_{1} (initial volume)
T_{1} (initial temperature)
P_{2} (final pressure)
V_{2} (final volume)
T_{2} (final temperature)
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$

Density

D (density)
ρ (density which is commonly represented by the lowercase Greek letter rho)
m (mass)
V (volume)
$D=\frac{m}{V}$ or $\rho=\frac{m}{V}$

Enthalpy of Reaction

```
\(\Delta H\) (enthalpy of reaction)
\(\Delta H_{f}^{\circ}\) (products) (enthalpy of products)
\(\Delta H_{f}^{\circ}\) (reactants) (enthalpy of reactants)
\(\Delta H=\Delta H_{f}^{\circ}\) (products) \(-\Delta H_{f}^{\circ}\) (reactants)
```


Equilibrium Constant

$K_{\text {eq }}$ (equilibrium constant)
[A] (concentration in moles per liter of gas A)
[B] (concentration in moles per liter of gas B)
[C] (concentration in moles per liter of gas C)
[D] (concentration in moles per liter of gas D)
a (coefficient of gas A)
b (coefficient of gas B)
c (coefficient of gas C)
d (coefficient of gas D)
Given the general chemical equation $a A+b B \rightleftharpoons c C+d D$,

$$
K_{e q}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

Final Mass
m_{f} (final mass)
m_{i} (initial mass)
n (number of half-lives)
$m_{f}=m_{i}\left(\frac{1}{2}\right)^{n}$

Freezing Point Depression

$\Delta \mathrm{T}_{f}$ (freezing point depression)
K_{f} (molal freezing point constant)
m (molality)

$$
\Delta T_{f}=K_{f} m
$$

Gay-Lussac's Law (aka Amontons Law)

P_{1} (initial pressure)
T_{1} (initial temperature)
P_{2} (final pressure)
T_{2} (final temperature)
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$

Heat Gained or Lost
Q (heat gained or lost)
m (mass)
C_{p} (specific heat)
$\Delta \mathrm{T}$ (change in temperature)

$$
Q=m c_{p} \Delta T
$$

Ideal Gas Law

P (pressure)
V (volume)
n (number of particles in moles)
R (ideal gas constant)
T (temperature in Kelvin)
$P V=n R T$

Ideal Gas Law (Second Form)

P_{1} (initial pressure)
V_{1} (initial volume)
n_{1} (initial moles)
T_{1} (initial temperature)
P_{2} (final pressure)
V_{2} (final volume)
T_{2} (final temperature)
n_{2} (final moles)
$\frac{P_{1} V_{1}}{n_{1} T_{1}}=R=\frac{P_{2} V_{2}}{n_{2} T_{2}}$

Ionization Constant of Water

K_{w} (ionization constant of water)
[H^{+}] (hydrogen ion concentration)
[OH^{-}] (hydroxide ion concentration)
$K_{w}=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]$

Molality
m (molality)
mol (moles of solute)
kg (kilograms of solvent)
$m=\frac{m o l}{k g}$

Molarity

M (molarity)
mol (moles of solute)
L (liters of solution)
$M=\frac{\mathrm{mol}}{L}$
: : : : : : : : : : : : : : :

Percent Error

V_{a} (accepted value)
V_{e} (experimental value)
$\%$ error $=\frac{\left|V_{a}-V_{e}\right|}{V_{a}} \times 100$
! : : : : : : : : : : : : : : :

Percent Yield

Y_{a} (actual yield)
Y_{t} (theoretical yield)
$\%$ yield $=\frac{Y_{a}}{Y_{t}} \times 100$

pH
$\left[\mathrm{H}^{+}\right]$(hydrogen ion concentration)
$p H=-\log \left[H^{+}\right]$

Planck's constant

$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Planck-Einstein Relation

E (energy)
h (Planck's constant which is $6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$)
f (frequency)
c (speed of light)
λ (wavelength which is commonly represented by the lowercase Greek letter lambda)
$E=h f=\frac{h c}{\lambda}$

Radioactive Half-Life

N_{t} (mass of radioactive material at time interval t)
N_{o} (mass of the original amount of radioactive material)
k (decay constant)
t (time interval for a half-life period)
$\ln \frac{N_{t}}{N_{o}}=-k t$

Speed of Light

c (speed of light)
f (frequency)
λ (wavelength which is commonly represented by the lowercase Greek letter lambda)
P_{1} (partial pressure of component gas 1)
P_{2} (partial pressure of component gas 2)
P_{3} (partial pressure of component gas 3)

$$
P_{T}=P_{1}+P_{2}+P_{3}+\ldots
$$

Total Pressure of a Gas

P_{T} (total pressure of a gas)
P_{1} (partial pressure of component gas 1)
P_{2} (partial pressure of component gas 2)
P_{3} (partial pressure of component gas 3)
$P_{T}=P_{1}+P_{2}+P_{3}+\ldots$

Volume Molarity Relationship

V_{a} (volume of solution a)
M_{a} (molarity of solution a)
V_{b} (volume of solution b)
Mb_{b} (molarity of solution b)

$$
V_{a} M_{a}=V_{b} M_{b}
$$

For more information and examples, see the current BANA Guidance https://www.brailleauthority.org/nemeth-code

Chemical Nomenclature

Chemical Equations

$\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$

Chemical Equation with Parenthesis

$$
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CaCl}_{2}
$$

Equation with Ionic Properties
$2 \mathrm{Na}^{+}+\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)^{2-} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

Equilibrium Equation with States of Matter

$$
\begin{aligned}
& 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \text { : }
\end{aligned}
$$

Down Pointing Arrow (Precipitation)

(down arrow indicates a precipitate forms in the reaction)

$$
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{CaSO}_{4} \downarrow
$$

Up Pointing Arrow (Vaporization)
(up arrow indicates a gas is released)
$2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \uparrow$

Appendix D

Periodic Table

It is important to get the student a copy of the periodic table when the rest of the class is using the periodic table. Below are some good sources for a periodic table.

- American Printing House for the Blind (APH) Periodic Table of Elements Reference Booklets, Nemeth (discontinued, but may be available from your state's EOT)
- Includes:
- Print Reference Booklet for the teacher https://www.aph.org/product/periodic-table-of-the-elements-reference-chart-and-booklet-print/
- Braille Reference Booklet for the student https://www.aph.org/product/periodic-table-of-the-elements-reference-chart-and-booklet-braille/
- Tactile graphic of the Periodic Table of the Elements that spans two facing pages with corresponding print representation (was available with each of the reference booklets above)
- American Printing House for the Blind (APH) Azer's Interactive Periodic Table Study Set (NEMETH) https://www.aph.org/product/azers-interactive-periodic-table-study-set-nemeth/
- Tactile Vision Graphics Periodic Table of Chemical Elements https://tactilevisiongraphics.com/product/table-of-elements/
- More information
https://www.perkinselearning.org/technology/blog/accessible-periodic-table-options

Appendix E Physics

Acceleration

a (acceleration)
t_{f} (final time)
t_{i} (initial time)
v_{f} (final velocity)
v_{i} (initial velocity)
Δt (change in time)
$\Delta \mathrm{d}$ (change in position, distance traveled, or displacement)
$\Delta \mathrm{v}$ (change in velocity-m/s)
$a=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{v_{f}^{2}-v_{i}^{2}}{2 \Delta d}=\frac{\text { distance }}{\text { time }^{2}}$

Centripetal Acceleration

a_{c} (centripetal acceleration)
v_{t} (tangential velocity)
r (radius)
$a_{c}=\frac{v_{t}^{2}}{r}$
: :

Coulomb's Constant

N (Newton)
C (Coulombs)
m (meters)
$8.988 \times 10^{9}\left(\frac{N m^{2}}{C^{2}}\right)$

Density

m (mass)
V (volume)
ρ (density which is commonly represented by the lowercase Greek letter rho)
$\rho=\frac{m}{V}$

Displacement

v_{i} (initial velocity)
a (acceleration)
Δd (distance traveled or displacement)
Δt (change in time)
$\Delta d=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$

Distance (for Something Falling)

d (distance traveled)
g (acceleration due to gravity which is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ on earth's surface)
t (time)
$d=\frac{1}{2} g t^{2}$

Eccentricity

e (eccentricity)
f (distance between foci of an ellipse)
d (major axis length of an ellipse)
$e=\frac{f}{d}$

Efficiency

Eff (percent efficiency)
Wo (work out)
W_{I} (work in)
$E f f=\frac{W_{0}}{W_{I}} \times 100$

Einstein's Equation (Mass-Energy Equivalence)

```
E (energy)
m (mass)
c (speed of light which is 3\times10}\mp@subsup{0}{}{8}\textrm{m}/\textrm{s}\mathrm{ )
E=mc
```


Elastic Potential Energy

EPE (elastic potential energy)
k (spring constant)
x (distance stretched or compressed)
$E P E=\frac{1}{2} k x^{2}$

Electric Current

I (current)
V (voltage)
R (resistance)
$I=\frac{V}{R}$

Electric Energy

```
E (energy)
P (power)
t (time)
E=Pt
```


Electric Field

E (electric field)
F_{E} (electric force)
q (test charge)
$E=\frac{F_{E}}{q}$

Electric Force

F_{E} (electrical force between 2 charged particles)
kc_{C} (Coulomb's constant which is $8.988 \times 10^{9}\left(\frac{\mathrm{Nm}}{\mathrm{C}^{2}}\right)$)
q_{1} (charge of $1^{\text {st }}$ particle)
q_{2} (charge of $2^{\text {nd }}$ particle)
d (distance between particles)
$F_{E}=\frac{k_{C} q_{1} q_{2}}{d^{2}}$

Electric Potential

V (electric potential)
EPE (electric potential energy) q (charge)
$V=\frac{E P E}{q}$

Electric Power

```
P (electric power)
```

V (voltage)
I (current)
$P=V I$
: : : : : :

Electric Voltage

V (voltage)
I (current)
R (resistance)
$V=I R$
: : :
Energy (of Waves)
E (energy)
h (Planck's constant which is $6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$)
f (frequency)
$E=h f$
! : : : : : : : : : :

Equivalent Resistance (Resistors in Series)

R (series resistance)
R_{1} (resistance 1)
R_{2} (resistance 2)
R_{3} (resistance 3)

$$
R=R_{1}+R_{2}+R_{3}+\ldots
$$

Equivalent Resistance (Resistors in Parallel)

R (parallel resistance)
R_{1} (resistance 1)
R_{2} (resistance 2)
R_{3} (resistance 3)

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

Focal Length (Positive for Concave Mirrors, Negative for Convex Mirrors)
f (focal length)
R (radius of curvature of the mirror's surface)
$f=\frac{R}{2}$

Frequency (of Waves)

$$
\begin{aligned}
& \text { f(frequency) } \\
& \mathrm{T} \text { (period) } \\
& f=\frac{1}{T} \\
& : \vdots \quad \vdots: \vdots: \vdots: \vdots: \vdots:
\end{aligned}
$$

Gravitational Constant

N (Newton)
kg (kilogram)
m (meters)

$$
\begin{aligned}
& G=6.67 \times 10^{-11}\left(\frac{N m^{2}}{k g^{2}}\right)
\end{aligned}
$$

Gravitational Force (Between Two Objects)

F_{g} (gravitational force between 2 objects)
G (gravitational constant which is $6.67 \times 10^{-11}\left(\frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}\right)$)
m_{1} (mass of $1^{\text {st }}$ object)
m_{2} (mass of $2^{\text {nd }}$ object)
d (distance between centers of objects)
$F_{g}=\frac{G m_{1} m_{2}}{d^{2}}$

Gravitational Potential Energy

GPE (gravitational potential energy)
m (mass)
g (acceleration due to gravity which is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ on earth's surface) h (height)

$$
G P E=m g h
$$

Heat Gained or Lost

Q (heat gained or lost)
m (mass)
c_{p} (specific heat)
$\Delta \mathrm{T}$ (change in temperature)
$Q=m c_{p} \Delta T$

Impulse (Change in Momentum)

I (impulse)
$\Delta \mathrm{p}$ (change in momentum)
F (force)
Δt (change in time, elapsed time)
M (mass)
$\Delta \mathrm{v}$ (change in velocity)
$I=\Delta p=F \Delta t=m \Delta v$

Kinetic Energy

KE (kinetic energy)
m (mass)
v (velocity)
$K E=\frac{1}{2} m v^{2}$
: :

Law of Conservation of Energy

KE_{i} (initial kenetic energy)
$P E_{i}$ (initial potential energy)
KE_{f} (final kinetic energy)
$P E_{f}$ (final potential energy)
$K E_{i}+P E_{i}=K E_{f}+P E_{f}$

Law of Conservation of Momentum

m_{1} (mass of particle A)
u_{1} (velocity of particle A before impact)
v_{1} (velocity of particle A after impact)
m_{2} (mass of particle B)
u_{2} (velocity of particle B before impact)
v_{2} (velocity of particle B after impact)
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$

Lorentz Factor (Gamma Factor)

\curlyvee (Lorentz Factor represented by the lowercase Greek letter gamma)
v (velocity)
c (speed of light which is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
$\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{C}\right)^{2}}}$

Mechanical Energy

ME (mechanical energy)
KE (kinetic energy)
PE (potential energy)
$M E=K E+P E$

Mirror Equation

f (focal length)
d_{i} (distance to image)
do (distance to object)
$\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}}$

Momentum

$$
\begin{aligned}
& \mathrm{p} \text { (momentum) } \\
& \mathrm{m} \text { (mass) } \\
& \mathrm{v} \text { (velocity) } \\
& p=m v \\
& \vdots!\quad \vdots!: \quad \because!:
\end{aligned}
$$

Net Force

```
    F (net force, sum of all forces)
    m (mass)
    a (acceleration)
\(F=m a\)
```


Period (of Waves)

T (period)
f (frequency)
$T=\frac{1}{f}$

Period (of a Pendulum)

T (period)
I (length)
g (acceleration due to gravity which is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ on earth's surface)
$T=2 \pi \sqrt{\frac{l}{g}}$
: :

Planck's Constant

J (Joule)
s (second)
$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Position

x (position)
x_{0} (initial position)
v_{0} (initial velocity)
t (time)
a (acceleration)
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$

Power

P (power)
W (work done)
t (time interval)
$P=\frac{W}{t}$

Pressure

P (pressure)
F (Newtons)
A (area in meters squared)
$P=\frac{F}{A}$

Pythagorean Theorem

a and b (legs)
c (hypotenuse)
$a^{2}+b^{2}=c^{2}$

Restoring Force

F (restoring force)
k (spring constant)
x (displacement)
$F=-k x$

Speed
s (speed)
Δ d (distance traveled)
Δt (change in time)
$s=\frac{\Delta d}{\Delta t}$

Torque

τ (torque which is commonly represented by the lowercase Greek letter tau)
F (force)
r (lever arm)
$\tau=F r$

Velocity (Average)

Vavg (average velocity)
t_{f} (final time)
t_{i} (initial time)
X_{f} (final position)
x_{i} (initial position)
Δx (change in position, distance traveled, or displacement)
Δt (change in time)
$v_{a v g}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}$

Velocity (for Constant Acceleration)

v_{f} (final or instantaneous velocity)
v_{i} (initial velocity)
a (acceleration)
t (time)
$v_{f}=v_{i}+a t$
: :

Velocity (for Something Falling)

\checkmark (velocity)
v_{f} (final or instantaneous velocity)
v_{i} (initial velocity)
g (acceleration due to gravity which is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ on earth's surface)
t (time)
$v=g t$ or $v_{f}=v_{i}-g t$

Velocity (of Waves)

v (velocity)
f (frequency)
λ (wavelength which is commonly represented by the lowercase Greek letter lambda)
$v=f \cdot \lambda$
$\vdots \quad \vdots: \vdots \quad: \quad: \vdots: \vdots$

Weight (Object with Only Force of Gravity Acting On It)

W (weight)
m (mass)
g (acceleration due to gravity which is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ on earth's surface)
$W=m g$
$\vdots: \vdots \quad \vdots: \vdots$

Work

W (work)
F (force)
d (distance)
θ (angle between the force direction and movement direction which is commonly represented by the lowercase Greek letter theta) $\Delta K E$ (change in kinetic energy)
$W=F d$ or $W=F d \cos \theta$ or $W=\Delta K E$

Appendix F
 Metric System

10^{n}	Prefix	Symbol	Decimal
10^{24}	Yotta	Y	$1,000,000,000,000,000,000,000,000$
10^{21}	Zetta	Z	$1,000,000,000,000,000,000,000$
10^{18}	Exa	E	$1,000,000,000,000,000,000$
10^{15}	Peta	P	$1,000,000,000,000,000$
10^{12}	Tera	T	$1,000,000,000,000$
10^{9}	Giga	G	$1,000,000,000$
10^{6}	Mega	M	$1,000,000$
10^{3}	Kilo	k	1,000
10^{2}	Hecto	h	100
10^{1}	Deka	da	10
10^{0}	(Base $)$		1
10^{-1}	Deci	d	0.1
10^{-2}	Centi	C	0.01
10^{-3}	Milli	m	0.001
10^{-6}	Micro	μ	0.000001
10^{-9}	Nano	n	0.000000001
10^{-12}	Pico	p	0.000000000001
10^{-15}	Femto	f	0.000000000000001
10^{-18}	Atto	a	0.000000000000000001
10^{-21}	Zepto	z	0.000000000000000000001
10^{-24}	Yocto	y	0.000000000000000000000001

References

Braille Authority of North America. BANA Guidelines for the Transcription of Early Educational Materials from Print to Braille. Retrieved from https://www.brailleauthority.org/early-learning-materials

Braille Authority of North America. (2018). Guidance for Transcription Using the Nemeth Code Within UEB Contexts. Retrieved from https://www.brailleauthority.org/nemeth-code

Braille Authority of North America. (2007-2015). Addendum, applications, and updates. Retrieved from https://www.brailleauthority.org/nemethcode

Braille Authority of North America. (2010). Guidelines and Standards for Tactile Graphics. Retrieved from http://www.brailleauthority.org/tg/index.html
Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics. Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers. Retrieved from http://www.corestandards.org/Math/

International Council on English Braille. (2013). The Rules of Unified English Braille (2nd ed.). Retrieved from http://iceb.org/Rules\ of\ Unified\ English\ Braille\ 201 3.pdf

Maryland Department of Education. (2015). Maryland College and Career Ready Standards for Unified English Braille. Retrieved from https://www.pathstoliteracy.org/wpcontent/uploads/2023/08/MD College and Career Ready Standards for Unified English Braille Math.pdf

National Federation for the Blind. (2015). Instruction Manual for Braille Transcribing - UEB Edition. Baltimore, MD: Author. https://nfb.org/programs-services/braille-certification/ueb-resources

Nemeth, A. (1972). The Nemeth Braille Code for Mathematics and Science Notation. Louisville, KY: American Printing House for the Blind. https://www.brailleauthority.org/nemeth-code

